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Blockchain, as a potentially revolutionary technology, has been used in cryptocurrency to
record transactions chronologically among multiple parties. Due to the fast development of
the blockchain and its de-centralization, blockchain technology has been applied in
broader scenarios, such as smart factories, supply chains, and smart cities. Consensus pro-
tocol plays a vital role in the blockchain, which addresses the issue of reaching consensus
on transaction results among involved participants. Nevertheless, with the complexity of
the network environment and growing amount of network users, the advance of block-
chain is gradually restricted by the efficiency, security and reliability of consensus proto-
cols. In this paper, we propose a delegated randomization Byzantine fault tolerance
consensus protocol named DRBFT based on Practical Byzantine Fault Tolerance (PBFT) to
enhance the efficiency and reliability of the consensus procedure. Specifically, a random
selection algorithm called RS is developed to cooperate with the voting mechanism, which
can effectively reduce the number of nodes participating in the consensus process. Our pro-
posed scheme is characterized by the unpredictability, randomicity and impartiality, which
accelerate the system to reach consensus on the premise of ensuring the system activity.
Furthermore, the feasibility of our proposed scheme is also proved by both theoretical anal-
ysis and experimental evaluations.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

A blockchain is a time-ordered distributed ledger used to record transactions, and is maintained by multiple nodes
through peer-to-peer networks [1]. Since Nakamoto proposed the first cryptocurrency–BitCoin in 2008 [2], the emerging
financial system model has gradually attracted public attention. As a result, various cryptocurrencies have been proposed,
such as LiteCoin [3], PPCoin [4], and BlackCoin [5]. As the basic technology of cryptocurrencies, blockchain has been closely
followed by researchers due to its de-centralization and the feature that data could not be tampered with. In blockchain sys-
tems, each newly generated block is appended with the latest transactions. Then, the block is linked to the previous one after
all nodes verifying its validity. Only transactions attached to the block will be executed in practice. Notice that there is no
authority throughout the process since blockchains can provide trust by themselves. In addition, the security and efficiency
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of blockchain systems are also ensured by cryptographic protocols. With the deepening of research, blockchains get rid of the
restriction of cryptocurrencies and provide trust services for more applications in the smart contract [6,7], smart city [8] as
well as medical information management [9] etc.

According to the degree of de-centralization, blockchains can be divided into three types [10], public chain, consortium
chain and private chain. The characteristic of the public chain is that arbitrary nodes are allowed to participate in the process
of consensus anytime. Therefore, this kind of chain is usually used in scenarios where privacy concerns and trusted institu-
tions are not required, such as Bitcoin [2] and Ethereum [11]. The consortium chain is managed by several consortium or
institutions, which means that the consortium chain is partially decentralized and supervised. For the private chain, nodes
are controlled by an institution, and only authorized nodes can participate in various affairs.

The consensus protocol is one of the most critical technologies in the blockchain [12]. Due to the high latency in the peer-
to-peer network, the order of transactions observed by each node is inconsistent. To solve this problem, consensus protocols
were proposed to enable all nodes to reach a consensus on the content and order of transactions that created within a certain
time. Different consensus protocols are suitable for different application scenarios according to their characteristics. For the
public chain, there are several consensus protocols that have been successfully applied, such as Proof-of-Work (PoW) [2],
Proof-of-Stake(PoS) [4] and Delegated Proof-of-Stake (DPoS) [13]. As an extensive consensus protocol, PoW requires each
node to compete for accounting rights through calculating a difficult problem. This protocol accesses the consensus issue
among different nodes, but leads to serious waste of resources and the lack of fairness due to the concentration of global
computational power [14]. The rest protocols mentioned above also face with the potential risks which are triggered by
intentional or unintentional misoperations, network delay, collapse, and system vulnerabilities.

As the size of blockchain nodes expands, the hazards posed by these risks are so serious that they cannot be ignored. Con-
sequently, fault-tolerant consensus protocols are becoming increasingly important. Practical Byzantine Fault Tolerance
(PBFT) [15] proposed by Castro et al. is the first practical consensus protocol which could tolerant Byzantine faults in an
asynchronous network environment. PBFT system consists of a primary, ðn� 1Þ backups and several clients. After five stages
for peer-to-peer message interactions, the primary and backups reach a consensus on the request of client. In the whole pro-
cess, PBFT guarantees the liveness and security of the system when the number of abnormal nodes is less than ðn� 1Þ=3. In
addition, the consistency and correctness of consensus of PBFT are better than other protocols. However, when the amount of
the participating nodes is large, PBFT is inefficient since the complexity of PBFT is high. Hence, it is a research hotspot to
design PBFT based consensus protocols, which are suitable for the scenarios that have a large number of nodes and need
to tolerate Byzantine faults.

Although there are some such protocols, e.g. Delegated Byzantine Fault Tolerance (DBFT) [16] and the consensus protocol
used in Thunderchain [17], they lack performance analyses or formal security proofs. Therefore, the claimed performances of
these consensus protocols are worrisome and unconvincing. More importantly, a lack of fairness idea of existing protocols
make it difficult for system to maintain activity. In other words, an unfair systemic mechanism will reduce the enthusiasm of
node participation, leading to the blockchain system losing its advantages and attractiveness.

In this paper, we propose a novel consensus protocol called delegated randomization Byzantine fault tolerance (DRBFT) to
solve the problem of efficiency and activity in the prior art. The proposed protocol is suitable for blockchains with large-scale
nodes in the asynchronous network environment, and reaches consensus efficiently in the case of considering Byzantine
faults. The main idea of our scheme is to select delegate nodes fairly from all participating nodes to execute PBFT. In order
to achieve this goal, we present a random selection (RS) algorithm that selects a specified number of nodes from a given set
of nodes. Specifically, our proposed scheme is divided into three steps. Initially, a fixed number of candidates are selected
from all nodes of the blockchain by voting. Each node votes for its preferred node in a period only once. After voting, the
N nodes with the highest number of votes participate as candidates in the next step. Then, some candidates are selected
as councillors with the RS algorithm. Finally, these councillors execute PBFT consensus protocol to generate new blocks.

In particular, the proposed RS algorithm satisfies the following properties.

� Unpredictability: Given a set of nodes, the results of selecting are unpredictable before executing the RS algorithm. Due to
the high cost, it is impossible to achieve prejudging which nodes will be selected and interfering with the fairness of the
selection.

� Uniform distribution: For two identical sets of nodes, the result set of running the RS algorithm is uniformly distributed
and irreversible under different dynamic parameters. This property is the core of the RS algorithm. The uniform distribu-
tion of the result set means that each node is selected with the same probability. In this way, the selection can be con-
sidered fair.

� Impartiality: If the set of nodes and the dynamic parameter are invariant, then the result set of selecting is also invariant,
which makes the fairness of selection irrelevant to the reliability of the selector. Once the dynamic parameter is given, the
result of running the RS algorithm by anyone is the same. This property makes the RS algorithm impartial enough.

All properties are well supported by strict proofs. We also implement the proposed algorithm on personal computers, and
experimental simulations show that our algorithm is efficient.

The rest of this paper is organized as follows. In Section 2, we briefly review some related works. Some preliminaries used
in our proposed protocol are introduced in Section 3, and the systemmodel and design goals of our scheme are formalized in
9
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Section 4. We describe the details of our RS algorithm and DRBFT in Section 5 and give the proofs of properties in Section 6.
The implementation results are shown in Section 7. Finally, some concluding remarks are given in Section 8.
2. Related work

In this section, we introduce some existing works which improve the efficiency of implementing PBFT.
PBFT [15] proposed by Castro et al. promises the practical application of the Byzantine fault tolerance algorithm. With the

rise of large scale blockchain systems, however, the efficiency of PBFT hinders its further application. Therefore, researchers
focus on improving the performance and efficiency of PBFT. The existing related schemes can be roughly divided into two
categories, optimizing the algorithm structure [18–23] and reducing the number of nodes that execute the algorithm
[16,17,24–26].

For the first goal, Yin et al. proposed a Byzantine fault tolerance protocol in 2003 [18]. The scheme reduces the replication
costs and improves fault tolerance by separating the order request agreement from processing requests. In 2004, Kotla et al.
presented HTBFT algorithm [19] with a general parallelizer module to enhance the throughput and efficiency of PBFT. In
addition, Kotla designed an algorithm called Zyzzyva [20], which uses speculation mechanism to simplify BFT state machine
replication while greatly reducing the replication overhead. Aiming at the situation that the efficiency of PBFT is easily
affected by the primary’s performance, Amir et al. proposed a novel Byzantine fault tolerant algorithm Prime [21]. This algo-
rithm maintains the efficiency of the entire system when the primary is attacked and the performance decreases. The RBFT
algorithm [22] proposed by Clement et al. improves the ability of PBFT to resist Byzantine malicious nodes and the consensus
efficiency. Wood et al. proposed the ZZ consensus protocol [23] based on PBFT. In order to improve throughput and response
time, ZZ reduces the number of execution replicas under normal conditions from 2f þ 1 to f þ 1.

In another situation, DBFT [16] proposed by NEO uses DPoS to reduce the amount of nodes participating in PBFT consen-
sus. Concretely, nodes in DBFT are divided into consensus nodes and normal nodes. Consensus nodes are in charge of com-
municating with each other to generate new blocks. Normal nodes are responsible for verifying new blocks. The key of DBFT
is that all nodes in the blockchain vote for a certain number of nodes as consensus nodes. However, this step alone is still not
enough. During the electing, each node votes for the node which can represent its own benefits best. Since the willingness
will not change easily in a short term and the votes are cast with little enthusiasm, the nodes selected in each election are
generally the same and not representative. Therefore, it is hard to guarantee the fairness and activity of systems just by using
the voting idea of DPoS to select nodes.

To implement PBFT efficiently, Thunderchain [17] selects delegated nodes with Delegated Proof-of-Ability(DPoA) algo-
rithm whose idea is based on DPoS. The selected process of DPoA is also relied on voting. The difference between DPoA
and DPoS is that, in DPoA, the nodes whose performances of storage, network, bandwidth, latency etc. are better than others,
are assigned more voting weight. Under such circumstances, elected nodes have better performances to ensure the stable
operation of blockchain systems. However, there are some hidden threats by using this selecting way. Similar to PoW, the
nodes with excellent performance have a high probability of being elected as representatives. This leads to a gradual con-
vergence of high-performance equipment. Furthermore, the system loses fairness when the rights of accounting are held
by several large consortium.

Similar to the idea of using randomly selecting representatives to improve PBFT, Gilad et al. presented a consensus pro-
tocol, Algorand [24,25], which utilizes verifiable random functions and a Byzantine agreement protocol to reach consensus
on new blocks. To ensure the fairness of the system, the proposed functions select a set of verifier nodes with the random-
ness of hash functions. Specifically, all nodes use their secret keys to sign an information associated with the current block,
and compute the hash value of the signature. The selected verifier nodes of the current round are the nodes whose hash value
is less than a given parameter. In this way, their scheme guarantees the randomness and verifiability of the selection. How-
ever, verifying such signatures cost lots of computational resources. In particular, this method is hard to play well in asyn-
chronous networks due to the network delay.

As a result, these existing works cannot ensure the fairness of selection while improving the efficiency of PBFT. As men-
tioned above, the activities of a distributed system depend on the participation of each node. Hence, the goal of our scheme is
meaningful for the improvement of consensus algorithm in practice.
3. Preliminaries

In this section, we review some background knowledge about PBFT and probability distributions as well as hash
functions.

3.1. PBFT

PBFT [15] is a state machine replication algorithm and first solves the fault tolerance issues of a distributed system in
polynomial time. This protocol consists of three parties, a primary, n� 1 backups and several clients, and this system reaches
consensus successfully when the number of invalid backups is less than f, where n ¼ 3f þ 1. The primary distributes a
sequence number to the client-initiated request, and then reaches consensus with backups on whether this request will
10
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be executed or not and the order of execution. There are five stages involved in this procedure, including request, pre-prepare,
prepare, commit and reply.

In the request phase, the client broadcasts a REQUEST message and its signature ðm; sigðmÞÞ ¼ ðREQUEST; o; t; c; sigðmÞÞ to
the primary and backups, where o is a state machine operation, t is the current timestamp, and c is the identifier of the client.

In the pre-prepare phase, the primary rejects the REQUEST message if its signature is illegal. Otherwise, the primary
assigns a sequence number d to the REQUEST message. Then, the primary broadcasts a PRE-PREPARE message
ðPRE-PREPARE;v ; d;HðmÞÞ and a corresponding signature sigPP to backups, where v is the number of current view, and
HðmÞ is the hashed value of m.

In the prepare phase, each backup records the received information locally if they determine to accept the PRE-PREPARE
message. Then, each backup transmits a PREPAREmessage ðPREPARE;v ; d;HðmÞÞ and a signature sigP of the PREPAREmessage
to the primary as well as other backups.

In the commit phase, the primary and each backup verify the PREPARE message. After that, each backup records the
received information locally and sends a COMMIT message ðCOMMIT;v; dÞ with the corresponding signature sigC to the pri-
mary and other backups if at least 2f received PREPARE message is validated.

In the reply phase, each backup rejects the request if the number of validated commit messages is less than 2f . Otherwise,
each backup executes the operation launched by the client, and transmits a REPLY message ðREPLY ;v ; t; c; i; rÞ and its signa-
ture sigR to the client, where i is the number of the backup, and r is the operation result.

Finally, it means that the request launched by the client has reached consensus across the network if the client receives
f þ 1 identical REPLY messages. Otherwise, the client needs to retransmit the request.

As shown in Fig. 1, the primary, backup 1 and backup 2 can still reach a consensus on the client’s request when backup 3
is a faulty node. However, the communication cost of PBFT is a huge burden when the number of nodes is large.

We only introduce a brief flow of the algorithm here. More details can be found in the original paper [15].

3.2. Probability distribution

It is worth to introduce two kinds of notions about probability distributions, statistical [27] and computational [28] indis-
tinguishabilities. For two probability distributions, the first indistinguishability refers that no distinguishers could tell the
difference between them. The second one means that no polynomial algorithm could distinguish them. The formal defini-
tions are given below [29].

Definition 1 (Statistical Indistinguishability). Given two probability distributions X and Y on the set D, they are statistically
indistinguishable if their statistical distance DðX;YÞ is negligible.
D X;Yð Þ ¼ 1
2

X
d2D

jPr X ¼ dð Þ � Pr Y ¼ dð Þj 6 eðnÞ;
where n is the bit length of the elements in the set D.
Definition 2 (Computational Indistinguishability). Given two probability distributions X and Y on the set D, they are compu-
tationally indistinguishable if for any polynomial size circuit A, it has
AdvðAÞ ¼ j Pr
x2X

ðAðxÞ ¼ 1Þ � Pr
x2Y

ðAðxÞ ¼ 1Þj 6 eðnÞ:

The symbol eðnÞ denotes a negligible function about a natural number n [30]. The definition of negligible functions is

given below. This notion is important for complexity-based modern cryptographic algorithm design, especially for provably
secure cryptographic schemes.
Fig. 1. PBFT flow diagram.
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Definition 3 (Negligible Function). A function eðnÞ about a natural number n is negligible, if for any non-zero polynomial
polyðnÞ, there exists a natural number N0 such that
eðnÞj j < 1
polyðnÞ
����

����

holds for all n > N0.

Based on the above definition, we show several lemmas about negligible functions, and their proofs can be found in [30].

Lemma 1. For an arbitrary positive polynomial pðnÞ, the function eðnÞ ¼ pðnÞ=2n is negligible.
Lemma 2. If eðnÞ is a negligible function and pðnÞ is an arbitrary positive polynomial, then the function e�ðnÞ ¼ eðnÞpðnÞ is
negligible.
Lemma 3. If both e1ðnÞ and e2ðnÞ are negligible functions, then the function eðnÞ ¼ e1ðnÞ þ e2ðnÞ is negligible.
3.3. Hash function

A hash function is a deterministic function that maps an arbitrary bit string into a hashed value with fixed bit length [31].
In the following, we first introduce four desirable properties of hash functions [31]. Let the symbol H denote a hash function,
and the symbol jHj denote the fixed output bit length of this hash function.

(1) Mixing-transformation: The hashed value HðxÞ of an arbitrary input x should be computationally indistinguishable from

a uniform binary string in the interval ½0;2jHj � 1�.
(2) Collision resistance: Finding two different inputs a and b that satisfy HðaÞ ¼ HðbÞ should be computationally infeasible.
(3) Pre-image resistance: Finding a bit string x that satisfies HðxÞ ¼ h for a given hashed value h should be computationally

infeasible.
(4) Practical efficiency: The hashed value of a given input string x should be calculated in a small-degree polynomial time

in the size of x.

In fact, the hash function is used as a pseudo-random function to generate random number in our RS algorithm. In order
to facilitate the performance analysis of the scheme, the following assumption made based on the first property of hash
functions.

Assumption 1. Suppose the output of an ideal hash H is x1x2 . . . xn, then there are

(1) Each bit of the output of the hash function H is independent, i.e.,
Pr xijxj
� � ¼ PrðxiÞ;1 6 i; j 6 nandi– j:
(2) The value of each bit of the hash function H is random, i.e.,
Prðxi ¼ 0Þ ¼ Prðxi ¼ 1Þ ¼ 1=2;1 6 i 6 n:
4. System model and design goals

In this section, we formalize the system model and identify the design goals considered of our scheme.

4.1. System model

As shown in Fig. 2, there are three parties in our system model, including candidates, councillors, and normal nodes.

� Candidates: The candidates are elected from the whole nodes in a blockchain system at the beginning of the consensus
process. Since they could represent the interests of most nodes, they will form an alternative pool of nodes that perform
PBFT.

� Councillors: In each execution cycle, the councillors are selected from the candidates with the RS algorithm. They are
responsible for implementing PBFT algorithm to achieve consensus. The primary and backups in PBFT are all selected
from the councillors.

� Normal nodes: All nodes except candidates and councillors are called normal nodes. They are responsible for recording the
results of consensus and verifying the information as assistants.
12



Fig. 2. The system model under consideration.
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4.2. Design goals

Under the system model, the design goals of our proposed scheme are considered as follows.

� Fairness and impartiality. In order to improve the efficiency of achieving consensus in blockchains, it is practical to select
representative nodes. However, ensuring the fairness and impartiality of the selection process is also critical to maintain
the activity of systems. On the one hand, the selected nodes perform better than other nodes in executing the consensus
algorithm. On the other hand, if performance is the only consideration, then the selected nodes will always be the best
performing class of nodes, which will reduce the activity of nodes.

� Byzantine faults tolerance. Under the asynchronous network environment, the proposed consensus protocol should have
the ability to tolerate the Byzantine faults. In this way, this protocol is more suitable for wider application scenarios.

� Efficiency. The proposed protocol including the RS algorithm should be as efficient as possible, which is our original inten-
tion to improve PBFT.

5. Our construction

In this section, we first introduce the RS algorithm which is a significant part of DRBFT, and then present the details of
DRBFT protocol.

5.1. RS algorithm

In this subsection, we first introduce a random selection algorithm based on the hash function, the purpose of which is to
select elements from a given set of elements randomly. It is worth to mention that, the hash function used here has excellent
properties that we describe in Section 2. We give a detailed description of the algorithm as follows, and the corresponding
pseudo-code description is shown in Algorithm 1.

Algorithm 1. RS Algorithm
13
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The RS algorithm could be described as randomly selecting m elements p ¼ fp1; p2; . . . ; pmg from a set P ¼ fa1; a2; . . . aPg
with P elements, while ensuring that the selected elements are different from each other. It is worth to mention that the
selected element ai is reformulated into pj in order to describe the algorithm clearly, i.e., i ¼ 1; . . . ;m; pi 2 P. The set AP is
defined as follows,
AP ¼ faP ¼ fp1; . . . ;pmgj8i ¼ 1; . . . ;m;pi 2 P and p1; . . . ;pm are all differentg:

As a random seed, the initial value of the dynamic parameter seed is given before selecting members. To ensure the fair-

ness and unpredictability of selection, the initial value of seed should be a string associated to the current or previous round’s
information, such as seed ¼ HðhÞ, where h is the block header of the previous block.

In practice, it is hard to select the set p ¼ fp1; . . . ; pmg at once. Therefore, we accomplish this procedure in an iterative
way. Specifically, we first select p1 from the set P ¼ fa1; . . . ; aPg and put it into the set p, where p1 is the s-th member in
the set P and s ¼ HðseedÞðmodðPÞÞ þ 1. Then, we update the dynamic parameter as seed ¼ HðseedÞ and calculate
s ¼ HðseedÞðmodðP � 1ÞÞ þ 1. After that, we select the s-th member as p2 from the set P� fp1g ¼ fa1; . . . ; aPg � fp1g and
put it into the set p, and so on. Finally, we select the s-th member as pm from the set
P� fp1; . . . ; pm�1g ¼ fa1; . . . ; aPg � fp1; . . . ; pm�1g and put it into the set p after computing seed ¼ HðseedÞ as well as
s ¼ HðseedÞðmodðP �mþ 1ÞÞ þ 1. As a result, we get a set of selected members p ¼ fp1; . . . ; pmg.

Correctness: Notice that, for any HðseedÞ 2 Z, it has 0 < HðseedÞð mod ðPÞÞ 6 P � 1. Furthermore, it can derive that
0 < HðseedÞðmodðPÞÞ þ 1 6 P. Hence, the s-th member of the set P is meaningful. In order to ensure that the selected mem-
bers are different, the selected member is removed from the set P after each selection.

It is hoped that the final output set p will be subject to a uniform distribution on the set AP , i.e., 8aP ¼ fp1; . . . ; pmg 2 AP ,
there is
Pr U P;mð Þ ¼ aP½ � ¼ 1
APj j ¼

1
P
m

� � ¼ 1
P!

m! P�mð Þ!
¼ m! P �mð Þ!

P!
:

However, this condition is hard to be satisfied. In the practical schemes of cryptography, statistical indistinguishability
belongs to strong cryptographic primitives, which is enough to ensure the security of schemes. Let WðP;mÞ denote the prob-
ability distribution of the output of our RS algorithm. In the next section, we will prove that the probability distribution
WðP;mÞ is statistically indistinguishable from the uniform distribution UðP;mÞ. This conclusion ensures that the selection
process is sufficiently random.

5.2. DRBFT scheme

In this part, we elaborate on the DRBFT in four steps.

Algorithm 2. Voting Algorithm
14
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Algorithm 3. Getting M Candidates

Step1: Number all participating nodes to ensure that each node is identifiable.
Step2: Run a voting algorithm with all nodes as inputs to get a list of M candidates. Voting algorithms can fairly select a

certain number of nodes according to the wishes of most nodes, such as the voting mechanism in DPoS [13]. As shown in
Algorithm 2, we introduce an intuitive voting algorithm. The number of votes received by each node is denoted as Votei.
If aj votes for ai, set Voteji ¼ 1 or Voteji ¼ 0 otherwise. In addition, the parameterwi represents the voting weight of each node.
In order to ensure the consensus efficiency, we set the number of candidates as a constant. Therefore, as shown in Algorithm
3, the selected candidate is the node with the top M votes received.

Step3: Run the RS algorithmwithM candidates as inputs to select N councillors. As described in the last subsection, the RS
algorithm selects a given number of members from a set of members in a randomway. TakeM candidates, parameter N and a
string seed as the inputs of the RS algorithm and let the results of selection be the councillors. The dynamic parameter seed is
the hash value of the content of the last block. In this way, seed is not only random, verifiable, but also uniform in the whole
blockchain nodes.

Step4: N councillors execute PBFT to create consensus and generate new blocks. Initially, PBFT selects a primary from
councillors, and the rest councillors become backups. Then, the primary and backups exchange information through five
stages to achieve consensus on the requests of non-councillors nodes. The primary and backups locally store the requests
that reach consensus as new generated blocks. Finally, the new block is broadcasted to all non-councillors nodes for synchro-
nization. If the consensus fails due to the councillors, the RS algorithm will be re-executed to select new councillors and the
consensus process will be restarted.

6. Security proof

In this section, we analyze the properties of our RS algorithm, including unpredictability, uniform distribution and impar-
tiality. Firstly, we transform the practical problems into a mathematical model. Selecting m members from the set
P ¼ fa1; a2; . . . aPg with P numbered nodes is equal to the situation that selecting m members from the set
P ¼ f1;2; . . . ; Pg with P positive integers. In order to prove more intuitively, we introduce two intermediate probability dis-
tributions X and VðP;mÞ on the set P, respectively.

For any j 2 T ¼ f0;1;2; . . . ;2n � 1g, let XðjÞ ¼ jðmodPÞ þ 1, where P refers to the number of members in the set
P ¼ f1;2; . . . ; Pg. Notice that, for any j 2 P, it has 1 6 jðmodPÞ þ 1 6 P which could be inferred from 0 6 jðmodPÞ 6 P � 1
easily. Hence, X is indeed a distribution on the set P. Furthermore, we have the following lemma.

Lemma 4. The distribution X on the set P is statistically indistinguishable from the uniform distribution U on the set P.
Proof. Without loss of generality, let 2n ¼ kP þ r where 0 6 r 6 P � 1 is the non-negative least residue of the division of 2n

by P, and k ¼ ½2n=P� � 2n=P is the corresponding incomplete quotient. For any i 2 P, there is
Pr½X ¼ i 2 P� ¼ Pr½XðjÞ ¼ jðmod PÞ þ 1 ¼ i : j 2 T�
¼ Pr½jðmod PÞ þ 1 ¼ i : j 2 T�
¼ Pr½jðmod PÞ ¼ i� 1 : j 2 T�:
As described, for any i 2 P, there is 0 6 jðmod PÞ ¼ i� 1 6 P � 1.
15
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If 0 6 jðmodPÞ ¼ i� 1 6 r � 1, i.e., 1 6 jðmod PÞ þ 1 ¼ i 6 r, the number of j in T such that jðmod PÞ ¼ i� 1 is
kþ 1 ¼ ½2n=P� þ 1 > 2n=P. Hence, there is
PrðX ¼ i 2 PÞ ¼ Pr½jðmod PÞ ¼ i� 1 : j 2 T� ¼ kþ 1
2n >

1
P
: ð1Þ
If r 6 jðmod PÞ ¼ i� 1 6 P � 1, i.e., r þ 1 6 jðmod PÞ ¼ i 6 P, the number of j in T such that jðmod PÞ ¼ i� 1 is
k ¼ ½2n=P� � 2n=P. So, it has
PrðX ¼ i 2 PÞ ¼ Pr½jðmod PÞ ¼ i� 1 : j 2 T� ¼ k
2n 6 1

P
: ð2Þ
According to the Eqs. (1) and (2), the statistical distance between the two distributions X and U are calculated as follows.
DðX;UÞ ¼ 1
2

X
i2P

jPrðX ¼ iÞ � PrðU ¼ iÞj

¼ 1
2

X
16i6r

jPrðX ¼ iÞ � PrðU ¼ iÞj þ 1
2

X
rþ16i6P

jPrðX ¼ iÞ � PrðU ¼ iÞj

¼ 1
2

X
16i6r

j kþ1
2n � 1

P j þ 1
2

X
rþ16i6P

j k
2n � 1

P j

¼ 1
2 ½rðkþ1

2n � 1
PÞ þ ðP � rÞð1P � k

2nÞ�
¼ 1

2 ½r kPþP�2n

2nP þ ðP � rÞ 2n�kP
2nP �

¼ 1
2 ½r P�r

2nP þ ðP � rÞ r
2nP�

¼ rðP�rÞ
2nP :
Since rðP � rÞ 6 r þ ðP � rÞ½ �2=4 ¼ P2=4, we can deduce that DðX;UÞ 6 P=2nþ2. As a result, the distance between the two
distributions X and U is negligible according to Lemma 1. �

In addition, we give the description of another intermediate probability distribution VðP;mÞ on the set P. First, randomly
select a member p1 from the set P ¼ f1;2; . . . ; Pg (the probability that each member will be selected is 1=P). Then, randomly
select a member p2 from the set P� fp1g ¼ f1;2; . . . ; Pg � fp1g (the probability that each member will be selected is
1=ðP � 1Þ) and so on. The output set p ¼ fp1; p2 . . . ; pmg will be obtained until pm has been selected from the set
P� fp1; p2; . . . ; pm�1g ¼ f1;2; . . . ; Pg � fp1; p2; . . . ; pm�1g. We prove that this way of selecting is equal to the way of randomly
selecting at once.

Lemma 5. The probability distribution VðP;mÞ is equal to the uniform distribution U.
Proof. VðP;mÞ is also a distribution on the set AP . Hence, we just need to prove that 8aP ¼ fp1; p2; . . . ; pmg 2 AP , there is
Pr U P;mð Þ ¼ aP½ � ¼ Pr V P;mð Þ ¼ aP½ � ¼ m! P �mð Þ!
P!

:

Notice that
Pr V P;mð Þ ¼ aP ¼ fp1;p2; . . . ; pmg½ �
¼ m!Pr½select p1 for the first time ^ . . . ^ select pm for the m-th time�
¼ m! 1

Number of all options that select p1 ...pm from P

¼ m! 1
P�...�ðP�mþ1Þ

¼ m! 1�2�...�ðP�mÞ
1�2�...�ðP�mÞ�P�...�ðP�mþ1Þ

¼ m!ðp�mÞ!
P!

¼ Pr UðP;mÞ ¼ aP½ �:

Remark: There is ‘‘m!” on the right side of the first equation since Pr V P;mð Þ ¼ aP ¼ fp1; p2; . . . ; pmg½ � does not consider the

order, but Pr½. select p1 for the first time ^ . . .^ select pm for the m-th time � does. The symbolm! denotes the factorial of m.
�.

Next, we give a useful lemma about the statistical indistinguishability for joint probability distributions.

Lemma 6. Let D1 and D2 be two nonempty sets, if there exists a polynomial pðnÞ such that jD1j 6 pðnÞ and jD2j 6 pðnÞ, then the
probability distributions X1 and X2 on the set D1 are statistically indistinguishable, the probability distributions Y1 and Y2 on the
set D2 are statistically indistinguishable, X1 is statistically independent from Y1;X2 is statistically independent from Y2, then the
joint probability distribution ðX1;Y1Þ on the set D1 � D2 is statistically indistinguishable from ðX2;Y2Þ.
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Proof. According to Definition 1, there are two negligible functions e1ðnÞ and e2ðnÞ such that
DðX1;X2Þ ¼ 1
2

X
i2D1

jPrðX1 ¼ iÞ � PrðX2 ¼ iÞj 6 e1ðnÞ;

DðY1;Y2Þ ¼ 1
2

X
j2D2

jPrðY1 ¼ jÞ � PrðY2 ¼ jÞj 6 e2ðnÞ:
Hence, 8i 2 D1, it has
Pr X1 ¼ ið Þ � Pr X2 ¼ ið Þj j 6
X
i2D1

Pr X1 ¼ ið Þ � Pr X2 ¼ ið Þj j ¼ 2D X1;X2ð Þ 6 2e1ðnÞ:
It means that there exists a negligible function e�1iðnÞ such that
Pr X1 ¼ ið Þ ¼ Pr X2 ¼ ið Þ þ e�1iðnÞ:

Similarly, there exists a negligible function e�2jðnÞ such that
Pr Y1 ¼ jð Þ ¼ Pr Y2 ¼ jð Þ þ e�2jðnÞ:

Then, we calculate the statistical distance between X1;Y1ð Þ and ðX2;Y2Þ on the set D1 � D2, where ði; jÞ 2 D1 � D2.
D ðX1;Y1Þ; ðX2;Y2Þ½ �
¼ 1

2

P
Pr X1 ¼ i ^ Y1 ¼ jð Þ � Pr X2 ¼ i ^ Y2 ¼ jð Þj j

¼ 1
2

P j Pr X2 ¼ ið Þ þ e�1iðnÞ
� �

Pr Y2 ¼ jð Þ þ e�2jðnÞ
h i

� Pr X2 ¼ ið ÞPr Y2 ¼ jð Þj
¼ 1

2

P je�1iðnÞPr Y2 ¼ jð Þ þ e�2jðnÞPr X2 ¼ ið Þ þ e�1iðnÞe�2jðnÞj
6 1

2

P je�1iðnÞjPr Y2 ¼ jð Þ þ je�2jðnÞjPr X2 ¼ ið Þ þ je�1iðnÞe�2jðnÞj
h i

6 1
2

P je�1iðnÞj þ je�2jðnÞj þ je�1iðnÞe�2jðnÞj
h i

6 1
2

Pfmax
i2D1

je�1iðnÞj
� �þmax

j2D2

je�2jðnÞj
h i

þ max
i2D1 ;j2D2

je�1iðnÞe�2jðnÞj
h i

g

6 1
2p

2ðnÞfmax
i2D1

je�1iðnÞj
� �þmax

j2D2

je�2jðnÞj
h i

þ max
i2D1 ;j2D2

je�1iðnÞe�2jðnÞj
h i

g

¼ 1
2p

2ðnÞfmax
i2D1

je�1iðnÞj
� �þmax

j2D2

je�2jðnÞj
h i

þmax
i2D1

je�1iðnÞj
� �

max
j2D2

je�2jðnÞj
h i

g

6 1
2p

2ðnÞf2max
i2D1

je�1iðnÞj
� �þmax

j2D2

je�2jðnÞj
h i

g:
It is clear that 1=2p2ðnÞ 2je�1iðnÞj þ je�2jðnÞj
h i

is a negligible function according to Lemmas 2 and 3. �
Based on the above lemmas, we give the following theorems to support the properties of the RS algorithm.

Theorem 1. The distributions WðP;mÞ and VðP;mÞ on the set AP are statistically indistinguishable.
Proof. We use mathematical induction to prove this theorem.
Whenm ¼ 1, in fact, the distribution X in Lemma 4 is equal to the distributionWðP;1Þ according to Assumption 1, and the

distribution U is equal to the distribution VðP;1Þ. Hence, WðP;1Þ is statistically indistinguishable from VðP;1Þ on the basis of
Lemma 4.

Suppose WðP;m� 1Þ is statistically indistinguishable from VðP;m� 1Þ according to mathematical induction, i.e.,
WðP;mÞ ¼ WðP;m� 1Þ;WðP �mþ 1;1Þð Þ;

VðP;mÞ ¼ VðP;m� 1Þ;VðP �mþ 1;1Þð Þ:

According to Lemma 4, the distribution WðP �mþ 1;mÞ is statistically indistinguishable from VðP �mþ 1;1Þ. In addi-

tion, the probability experiments of WðP;m� 1Þ and VðP;m� 1Þ are independent. The probability experiments of
WðP �mþ 1;1Þ and VðP �mþ 1;1Þ are also independent. Therefore, the distributions WðP;m� 1Þ is statistically indepen-
dent from VðP;m� 1Þ, so do WðP �mþ 1;1Þ and VðP �mþ 1;1Þ. As a result, the distribution
WðP;mÞ ¼ WðP;m� 1Þ;WðP �mþ 1;1Þð Þ is statistically indistinguishable from VðP;mÞ ¼ VðP;m� 1Þ;VðP �mþ 1;1Þð Þ on
the basis of Lemma 6. �
Theorem 2. The distributions WðP;mÞ and UðP;mÞ on the set AP are statistically indistinguishable.
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Proof. The statistical distance between WðP;mÞ and UðP;mÞ is calculated as follows.
D WðP;mÞ;Uðp;mÞ½ �
¼ 1

2

P
Pr WðP;mÞ ¼ aPð Þ � Pr UðP;mÞ ¼ aPð Þj j

¼ 1
2

P
Pr WðP;mÞ ¼ aPð Þ � Pr VðP;mÞ ¼ aPð Þ þ Pr VðP;mÞ ¼ aPð Þ�j

Pr UðP;mÞ ¼ aPð Þj
6 1

2

P
Pr WðP;mÞ ¼ aPð Þ � Pr VðP;mÞ ¼ aPð Þj j þP

Pr VðP;mÞ ¼ aPð Þ�j½
Pr UðP;mÞ ¼ aPð Þj�
¼ 1

2 f2D WðP;mÞ;VðP;mÞ½ � þ 2D VðP;mÞ;UðP;mÞ½ �g
¼ D WðP;mÞ;VðP;mÞ½ � þ D VðP;mÞ;UðP;mÞ½ �;
where aP 2 AP . The statistical distance D VðP;mÞ;UðP;mÞ½ � ¼ 0 and D WðP;mÞ;VðP;mÞ½ � is negligible according to Lemma 5 and
Theorem 1, respectively. Hence, The statistical distance D WðP;mÞ;Uðp;mÞ½ � is negligible. �

Finally, we analyze the properties of RS algorithm based on the above conclusions.

(1) According to Theorem 2, it is clear that the distribution of the output of RS algorithm is statistically indistinguishable
from the uniform distribution. Hence, the probability that each member being selected is equal.

(2) In particular, the selector has no permission to select parameters. This ensures that no matter who executes RS algo-
rithm, the results are the same. Therefore, RS algorithm has the impartiality.

(3) Furthermore, the RS algorithm’s outputs are unpredictable since the hash value of the dynamic parameter is
unpredictable.

In the next section, we discuss the efficiency of RS algorithm under practical experiments.
7. Implementations

In this section, we evaluate the performance of RS algorithm from different aspects, including unpredictability, uniform
distribution, impartiality and efficiency. In practice, SHA-256 [32] is adopted as the ideal hash function in the RS algorithm.
The proposed algorithm is validated on a personal computer with go language. The environment parameters are listed as
follows:

� CPU: Intel(R) Pentium(R) 2.60 GHz
� RAM: 2.00 GB
� OS: Windows 7

7.1. Unpredictability

For a fixed pair of parameters ðP;mÞ, the RS algorithm is executed one hundred times with dynamic parameter seed re-
generated for each implementation. The difference of running results proves that the outputs of RS algorithm are hard to be
predicted.
7.2. Uniform distribution

To verify that the distribution of the outputs of RS algorithm is statistically indistinguishable from the uniform distribu-
tion, we select five pairs of ðP;mÞ and run the Algorithm 10000 times under each pair, where the dynamic parameter seed is
updated each time. The results show that selected times of each element in the set P is approximately equal. For example, as
Fig. 3 shows, each node is roughly selected 2500 times when P ¼ 20 and m ¼ 5. The corresponding theoretical value is
5=20� 10000 ¼ 2500 if it is uniform distribution. Therefore, this property of RS algorithm is verified from a statistical
perspective.
7.3. Impartiality

Similarly, in this part, the RS algorithm is repeatedly executed with the same inputs, i.e., P; m and seed remain unchanged.
The result of multiple runs is exactly the same, which means that the result of selection depends on the initial parameters,
not the selector. Therefore, everyone could monitor the procedure of selection easily, which enhances the transparency and
impartiality of systems.
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Fig. 3. The statistical results of RS algorithm.
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7.4. Efficiency

In order to test the efficiency of the scheme, the RS algorithm is executed 100 times under different parameters. As shown
in Fig. 4, we set P ¼ 100000;200000;500000;1000000 and m ¼ 50;100;150;200;250;300 respectively. The implementation
results demonstrate that our scheme is highly practical. Even if there are 1000000 nodes in the system, it takes only
251.98 ms for the proposed scheme to select 300 representative members. In particular, with the growth of the number
of nodes, the running time of RS algorithm increases almost linearly which is more pragmatic.
7.5. Comparison with related works

We compare DRBFT with traditional consensus protocols PoW, DPoS, PBFT, and PBFT-based consensus protocols DBFT and
DPoA+PBFT. The comparison results are shown in Table 1. It must be pointed out that the efficiency is considered in the net-
work composed of large-scale nodes. It is hard for PoW and DPoS to tolerate the Byzantine faults. PBFT is inefficient when the
Fig. 4. The running time of RS algorithm.

Table 1
Comparison with related works.

Consensus protocol Degree of de-centralization System activity Efficiency Byzantine fault tolerance Waste of resources

PoW Total Low Medium No High
DPoS High Medium High No Low
PBFT Medium High Low Yes Low
DBFT Medium Medium High Yes LoW
DPoA+PBFT Medium Low High Yes High
DRBFT Medium High High Yes Low
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number of involved nodes is large. DBFT and DPoA+PBFT will decrease the system activity since using only voting mecha-
nisms does not guarantee sufficient fairness. Besides, in Pow and DPoA+PBFT, there is a waste of resources because nodes
spend extra resources to compete for accounting rights. As a result, considering comprehensively, our scheme is more prac-
tical than others.

8. Conclusion

In this paper, we present a random selection algorithm RS based on hash functions to select representative nodes from all
nodes in the blockchain. The distribution of the outputs of RS algorithm is proven to be statistically indistinguishable from
the uniform distribution, which ensures the fairness of selection. In addition, the initiative and activity of blockchain systems
are guaranteed by the unpredictability and impartiality of RS algorithm. Furthermore, pair with the voting mechanism and
PBFT, we propose a consensus protocol DRBFT to solve the issue of inefficiency in the blockchain with large-scale nodes
under the asynchronous network environment. The implementations illustrate that our scheme is efficient and practical.
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